On the Order of Magnitude of Functions at Infinity

J. S. Byrnes
Department of Mathematics, University of Massachusetts, Boston, Massachusetts 02125, USA
AND
O. Shisha
Department of Mathematics, University of Rhode Island, Kingston, Rhode Island 02881, USA

Received April 12, 1982

1. Our purpose is to relate, in quite a general setting, the order of magnitude of real functions $f(x)$ as $x \rightarrow \infty$ to their degree of approximation by piecewise polynomials interpolating them on some simple denumerable sets of points.
2. Let f be a real function on $[0, \infty)$, let k be a positive integer, and let h be a real function satisfying $h(0)=0, h^{\prime}(x)>0$ and nonincreasing in $[0, \infty)$, and $\lim _{x \rightarrow \infty} h(x)=\infty$. We denote by $P_{k}(f, x ; h) \equiv P_{k}(f)$ the function with domain $[0, \infty)$ which in each

$$
\begin{equation*}
I_{n}=[h(n-1), h(n)), \quad n=1,2,3, \ldots \tag{1}
\end{equation*}
$$

coincides with the polynomial of degree $\leqslant k$ interpolating f at the $k+1$ equally spaced points

$$
\begin{equation*}
x_{j}^{(n)}=h(n-1)+\left(d_{n} / k\right) j, \quad j=0,1, \ldots, k, \tag{2}
\end{equation*}
$$

where $d_{n}=h(n)-h(n-1)$ is the length of I_{n}. In particular, $P_{\mathrm{I}}(f)$ is a polygonal function, interpolating f at $h(n), n=0,1,2, \ldots$. In the following theorem we relate the order of magnitude of $f(x)$ as $x \rightarrow \infty$ to that of our "degree of approximation"

$$
\langle f\rangle_{k, \gamma} \equiv \sup _{x\rangle \gamma}\left|f(x)-P_{k}(f, x ; h)\right|
$$

as $\gamma \rightarrow \infty$.
Later we show that, in our theorem (in one direction), $P_{k}(f)$ can be replaced by any piecewise polynomial of degree $\leqslant k$ whose knots are $h(n)$, $n=0,1,2, \ldots$, not necessarily one arising from interpolation.
3. Theorem. Let $f^{(k+1)}$ exist and be $\geqslant 0$ and nondecreasing ($o r \leqslant 0$ and nonincreasing) in $[0, \infty)$. Let g be a real function satisfying

$$
\begin{gather*}
g(0)>0, \quad g^{\prime}(x)>0 \tag{3}
\end{gather*} \quad \text { on } \quad[0, \infty) .
$$

g^{\prime} / g is nondecreasing in $[0, \infty)$ and absolutely continuous in each $[0, x], \quad 0<x<\infty$.

There is a constant A such that, for $n=1,2, \ldots$,

$$
\begin{equation*}
h^{\prime}(n-1) \leqslant A h^{\prime}(n) . \tag{6}
\end{equation*}
$$

There are constants $B(\geqslant 0), C, D$ such that, for every $x \geqslant B$, there is a $t_{x}>x$ satisfying

$$
\begin{equation*}
g^{\prime}\left(t_{x}\right) / g\left(t_{x}\right) \leqslant C g^{\prime}(x) / g(x), \quad g\left(t_{x}\right) /\left(t_{x}-x\right) \leqslant D g^{\prime}(x) \tag{7}
\end{equation*}
$$

There is a constant E such that $\phi(y) \leqslant E \phi(x)$ whenever $0 \leqslant x<y$.

Here

$$
\begin{equation*}
\phi(x)=\left[h^{\prime}\left(h^{-1}(x)\right) g^{\prime}(x)\right]^{k+1} g^{-k}(x) \quad \text { on } \quad[0, \infty) . \tag{9}
\end{equation*}
$$

Then

$$
\begin{equation*}
f(x)=O(g(x)) \quad \text { as } \quad x \rightarrow \infty \quad \text { iff } \quad\langle f\rangle_{k, \gamma}=O(\phi(\gamma)) \quad \text { as } \quad \gamma \rightarrow \infty . \tag{10}
\end{equation*}
$$

4. Examples. I. Let $h(x) \equiv \log (1+x), 0<\alpha \leqslant k+1$, and $g(x) \equiv e^{\alpha x}$. In (7) and (8) one can take $B=0, C=1, D=e^{\alpha} / \alpha, t_{x} \equiv 1+x$, and $E=1$. Then (10) gives

$$
f(x)=O\left(e^{\alpha x}\right) \quad \text { as } \quad x \rightarrow \infty \quad \text { iff } \quad\langle f\rangle_{k, y}=O\left(e^{(\alpha-k-1) \eta}\right) \quad \text { as } \quad \gamma \rightarrow \infty .
$$

II. Let $h(x) \equiv \log \log (e+x), g(x) \equiv e^{e^{x}}$. In (7) and (8) one can take $t_{x} \equiv x+e^{-x}, C=e, D$ any number $>e, B$ a sufficiently large number, and $E=1$. Here (10) reads

$$
f(x)=O\left(e^{e x}\right) \quad \text { as } \quad x \rightarrow \infty \quad \text { iff } \quad\langle f\rangle_{k, y}=O\left(e^{-k e^{y}}\right) \quad \text { as } \quad \gamma \rightarrow \infty .
$$

5. Proof of the Theorem. Assume that $f^{(k+1)}$ is $\geqslant 0$ and nondecreasing in $[0, \infty$) (otherwise, consider $-f$). Let

$$
F(x) \equiv f(x)-\sum_{j=0}^{k} \frac{f^{(j)}(0)}{j!} x^{j}
$$

so that $F(0)=F^{\prime}(0)=\cdots=F^{(k)}(0)=0$ and $F^{(k+1)}(x) \equiv f^{(k+1)}(x)$. Also $F-P_{k}(F)=f-P_{k}(f)$. Furthermore, by (4), $f(x)=O(g(x))$ as $x \rightarrow \infty$ iff $F(x)=O(g(x))$ as $x \rightarrow \infty$. Thus we may assume without loss of generality that

$$
\begin{align*}
& f^{(j)}(0)=0, j=0,1, \ldots, k \text {, and hence } f^{(j)}(x) \text { is } \geqslant 0 \text { and } \\
& \text { nondecreasing in }[0, \infty) \text { for } j=0,1, \ldots, k+1 \text {. } \tag{11}
\end{align*}
$$

Suppose now that M is a number such that

$$
\begin{equation*}
\langle f\rangle_{k, \gamma} \leqslant M \phi(\gamma) \quad \text { for all } \quad \gamma \geqslant \text { some } \gamma_{0} \geqslant 0 \tag{12}
\end{equation*}
$$

Let $x \geqslant \gamma_{0}$. Define the integer $n(\geqslant 1)$ and the number \tilde{x} by

$$
\begin{aligned}
h(n-1) & \leqslant x<h(n), \\
\tilde{x} & =h(n)+(2 k)^{-1}(h(n+1)-h(n))
\end{aligned}
$$

By the remainder theorem for Lagrange interpolation [1, p. 56] we have, using the notation (2), for some $\xi \in(h(n), h(n+1))$,

$$
\begin{aligned}
\left|f(\tilde{x})-P_{k}(f, \tilde{x} ; h)\right| & =\frac{f^{(k+1)}(\xi)}{(k+1)!} \prod_{j=0}^{k}\left|\tilde{x}-x_{j}^{(n+1)}\right| \\
& =\frac{f^{(k+1)}(\xi)}{(k+1)!}[h(n+1)-h(n)]^{k+1} \frac{1 \cdot 3 \cdots(2 k-1)}{(2 k)^{k+1}} .
\end{aligned}
$$

By (6), $h(n+1)-h(n)=\int_{n}^{n+1} h^{\prime}(x) d x \geqslant h^{\prime}(n+1) \geqslant A^{-2} h^{\prime}(n-1)$ so that

$$
\begin{aligned}
f^{(k+1)}(x) \leqslant f^{(k+1)}(\xi) & \leqslant M_{k}\left|f(\tilde{x})-P_{k}(f, \tilde{x} ; h)\right| h^{\prime}(n-1)^{-k-1} \\
& \leqslant M_{k}\langle f\rangle_{k, x} h^{\prime}(n-1)^{-k-1}
\end{aligned}
$$

where $M_{k}=(k+1)!(2 k)^{k+1} A^{2(k+1)}(1 \cdot 3 \cdots(2 k-1))^{-1}$. By (12) and (9), $f^{(k+1)}(x) \leqslant M M_{k} \phi(x) h^{\prime}(n-1)^{-k-1} \leqslant M M_{k} g^{\prime}(x)^{k+1} g^{-k}(x)$. Thus, by (5), for some constant $\mu_{k}, f^{(k+1)}(x) \leqslant \mu_{k} g^{\prime}(x)^{k+1} g^{-k}(x)$ throughout $[0, \infty)$. Furthermore, for $j=1,2, \ldots, k+2$, we have on $[0, \infty)$,

$$
\begin{equation*}
f^{(k+2-j)}(x) \leqslant \mu_{k} g^{\prime}(x)^{k+2-j} g^{j-k-1}(x) \tag{13}
\end{equation*}
$$

This was just shown to hold for $j=1$. Suppose it holds for some j, $1 \leqslant j \leqslant k+1$. Then, by (13), on $[0, \infty$),

$$
\begin{aligned}
f^{(k+1-j)}(x)= & \int_{0}^{x} f^{(k+2-j)}(t) d t \leqslant \mu_{k} \int_{0}^{x} g^{\prime}(t)\left[g^{\prime}(t) / g(t)\right]^{k+1-j} d t \\
= & \mu_{k} g(t)\left[g^{\prime}(t) / g(t)\right]^{k+1-j}| |_{0}^{x} \\
& -\mu_{k} \int_{0}^{x} g(t) \frac{d}{d t}\left[\left\{g^{\prime}(t) / g(t)\right\}^{k+1-j}\right] d t \\
\leqslant & \mu_{k} g(x)\left[g^{\prime}(x) / g(x)\right]^{k+1-j} .
\end{aligned}
$$

Taking, in (13), $j=k+2$, we have by (11),

$$
0 \leqslant f(x) \leqslant \mu_{k} g(x) \quad \text { throughout } \quad[0, \infty)
$$

as claimed in (10).
For the converse suppose that, for some constant J,

$$
0 \leqslant f(x) \leqslant J g(x) \quad \text { throughout } \quad[0, \infty) .
$$

For $j=0,1, \ldots, k+1$ and with B, C, D of (7),

$$
\begin{equation*}
f^{(j)}(x) \leqslant J C^{(j-1) j / 2} D^{j} g^{\prime}(x)^{j} g^{1-j}(x) \quad \text { throughout } \quad[B, \infty) . \tag{14}
\end{equation*}
$$

This is true for $j=0$ and assuming its truth for some $j, 0 \leqslant j \leqslant k$, we have by (11) and (7), for every $x \in[B, \infty)$ and a suitable $\theta \in\left(x, t_{x}\right)$,

$$
\begin{aligned}
J C^{(j-1) j / 2} D^{j} g^{\prime}\left(t_{x}\right)^{j} g^{1-j}\left(t_{x}\right) & \geqslant f^{(j)}\left(t_{x}\right)-f^{(j)}(x)=\left(t_{x}-x\right) f^{(j+1)}(\theta) \\
& \geqslant\left(t_{x}-x\right) f^{(i+1)}(x), \\
f^{(j+1)}(x) & \leqslant J C^{(j-1) j / 2} D^{j}\left[g^{\prime}\left(t_{x}\right) / g\left(t_{x}\right)\right]^{j} g\left(t_{x}\right) /\left(t_{x}-x\right) \\
& \leqslant J C^{j(i+1) / 2} D^{j+1} g^{\prime}(x)^{j+1} g^{-j}(x) .
\end{aligned}
$$

With $J_{k}=J C^{k(k+1) / 2} D^{k+1}$, (14) yields

$$
f^{(k+1)}(x) \leqslant J_{k}\left[g^{\prime}(x) / g(x)\right]^{k+1} g(x) \quad \text { throughout } \quad[B, \infty)
$$

and hence, by (3) and (5), for a suitable constant L,

$$
\begin{equation*}
f^{(k+1)}(x) \leqslant L\left[g^{\prime}(x) / g(x)\right]^{k+1} g(x) \quad \text { throughout } \quad[0, \infty) \tag{15}
\end{equation*}
$$

Let $0 \leqslant \gamma \leqslant x$. For a proper $n \geqslant 1, h(n-1) \leqslant x<h(n)$. Using again (2) and the above remainder theorem, we have, for some $\eta \in(h(n-1), h(n))$,

$$
\begin{equation*}
\left|f(x)-P_{k}(f, x ; h)\right|=\left[f^{(k+1)}(\eta) /(k+1)!\right] \prod_{j=0}^{k}\left|x-x_{j}^{(n)}\right| \tag{16}
\end{equation*}
$$

For $j=0,1, \ldots, k,\left|x-x_{j}^{(n)}\right| \leqslant h(n)-h(n-1)=\int_{n-1}^{n} h^{\prime}(t) d t \leqslant A h^{\prime}(n)$ (by (6)). Setting $M=L A^{k+1} /(k+1)$! we obtain from (16), (15), (5), (3), and (8),

$$
\begin{aligned}
\left|f(x)-P_{k}(f, x ; h)\right| & \leqslant M\left[\frac{g^{\prime}(\eta)}{g(\eta)}\right]^{k+1} g(\eta) h^{\prime}(n)^{k+1} \\
& \leqslant M\left[\frac{g^{\prime}(h(n))}{g(h(n))}\right]^{k+1} g(h(n)) h^{\prime}(n)^{k+1} \\
& =M \phi(h(n)) \leqslant M E \phi(\gamma)
\end{aligned}
$$

Hence $\langle f\rangle_{k, \gamma}=O(\phi(\gamma))$ as $\gamma \rightarrow \infty$.
6. Corollary. Assume the hypotheses of the Theorem. A necessary and sufficient condition for $f(x)$ to be $O(g(x))$ as $x \rightarrow \infty$ is the existence of a real function $Q(x)$ with domain $[0, \infty)$, continuous there, which in each I_{n} of (1) coincides with some polynomial of degree $\leqslant k$ and such that

$$
\sup _{x>\gamma}|f(x)-Q(x)|=O(\phi(\gamma))
$$

as $\gamma \rightarrow \infty$.
Proof. Only sufficiency needs proof. Let μ be a number such that

$$
\begin{equation*}
\sup _{x \geqslant \gamma}|f(x)-Q(x)| \leqslant \mu \phi(\gamma) \quad \text { for all } \quad \gamma \geqslant 0 \tag{17}
\end{equation*}
$$

Let $t \geqslant \gamma \geqslant 0$ and set

$$
R(x) \equiv P_{k}(f, x ; h)-Q(x)
$$

Then $t \in I_{n}$ for some $n \geqslant 1$ and, using (2),

$$
\begin{equation*}
R(t)=\sum_{j=0}^{k} R\left(x_{j}^{(n)}\right) \prod_{\substack{s=0 \\ s \neq j}}^{k}\left(t-x_{s}^{(n)}\right) /\left(x_{j}^{(n)}-x_{s}^{(n)}\right) \tag{18}
\end{equation*}
$$

Let $0 \leqslant j \leqslant k$. If $x_{j}^{(n)}<\gamma$, then $h(n-1)<\gamma<h(n)$ and by (6), (5), and (3),

$$
h^{\prime}(n-1) \leqslant A h^{\prime}(n) \leqslant A h^{\prime}\left(h^{-1}(\gamma)\right)
$$

and

$$
\left[g^{\prime}(h(n-1)) / g(h(n-1))\right]^{k+1} g(h(n-1))<\left[g^{\prime}(\gamma) / g(\gamma)\right]^{k+1} g(\gamma)
$$

so that, by (17),

$$
\begin{aligned}
\left|f\left(x_{j}^{(n)}\right)-Q\left(x_{j}^{(n)}\right)\right| & \leqslant \mu \phi(h(n-1)) \\
& =\mu\left[h^{\prime}(n-1) g^{\prime}(h(n-1))\right]^{k+1} g^{-k}(h(n-1)) \\
& \leqslant \mu A^{k+1}\left[h^{\prime}\left(h^{-1}(\gamma)\right) g^{\prime}(\gamma)\right]^{k+1} g^{-k}(\gamma)=\mu A^{k+1} \phi(\gamma) .
\end{aligned}
$$

If $x_{j}^{(n)} \geqslant \gamma$, then by (17), $\left|f\left(x_{j}^{(n)}\right)-Q\left(x_{j}^{(n)}\right)\right| \leqslant \mu \phi(\gamma) \leqslant \mu A^{k+1} \phi(\gamma)$ as $A \geqslant 1$.
By (18),

$$
|R(t)| \leqslant(k+1) \mu A^{k+1} \phi(\gamma) k^{k}
$$

and hence by (17),

$$
\left|f(t)-P_{k}(f, t ; h)\right| \leqslant\left[1+(k+1) A^{k+1} k^{k}\right] \mu \phi(\gamma) .
$$

Thus $\langle f\rangle_{k, \gamma}=O(\phi(\gamma))$ as $\gamma \rightarrow \infty$ and hence, by (10), $f(x)=O(g(x))$ as $x \rightarrow \infty$.

References

1. P. J. Davis, "Interpolation and Approximation," Blaisdell, New York, 1963; Dover, New York, 1975.
