JOURNAL OF APPROXIMATION THEORY 36, 328-333 (1982)

On the Order of Magnitude of Functions at Infinity

J. S. BYRNES

Department of Mathematics, University of Massachusetts,
Boston, Massachusetts 02125, USA

AND

O. SHISHA

Department of Mathematics, University of Rhode Island,
Kingston, Rhode Island 02881, USA

Received April 12, 1982

1. Our purpose is to relate, in quite a general setting, the order of
magnitude of real functions f(x) as x — oo to their degree of approximation
by piecewise polynomials interpolating them on some simple denumerable
sets of points.

2. Let f'be a real function on [0, o0), let k be a positive integer, and let 4
be a real function satisfying #(0) =0, #’(x) > 0 and nonincreasing in [0, c0),
and lim, ,, A(x) = co. We denote by P,(f, x; h) = P,(f) the function with
domain [0, oo0) which in each

I, = [h(n — 1), h(n)), n=123,., 0))

coincides with the polynomial of degree <k interpolating f at the k+ 1
equally spaced points

X =h(n—1)+ (d/k)jy =0, L k, )

where d,=h(n) — h(n— 1) is the length of I,. In particular, P,(f) is a
polygonal function, interpolating f at h(n), n=0, 1, 2,.... In the following
theorem we relate the order of magnitude of f(x) as x— co to that of our
“degree of approximation”

o= sup [f(x) = Pu(fs x5 b)|

as y— 0.
Later we show that, in our theorem (in one direction), P,(f) can be
replaced by any piecewise polynomial of degree <k whose knots are k(n),
n=0, 1, 2,..., not necessarily one arising from interpolation.
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3. THEOREM. Let f**" exist and be >0 and nondecreasing (or <0 and
nonincreasing) in [0, ). Let g be a real function satisfying

g(0) >0, g'(x)>0 on [0, o). 3)
x*=0(g(x)) as x- oo. 4)
g'/g is nondecreasing in [0, 00) and absolutely continuous in

each [0, x|, 0<x< oo 5)

There is a constant A such that, for n=1,2,...,

' (n— 1)< Ah'(n). (6)

There are constants B(>0), C, D such that, for every x > B,
there is a t, > x satisfying

g'(t)/8(t,) < Cg'(x)/g(x),  g(t)/(t. —x) < Dg'(x). (M

There is a constant E such that ¢(y)< E¢(x) whenever

0K x <y ®)
Here
px)=[R'(h"'(x)g' ()] g x)  on [0, 0). ©)
Then

fE)=0(gx)) as x>0 iff (fh,=0@@) as y->ow. (10)

4, ExampLES. I Let A(x)=log(l +x), 0<agk+ 1, and g(x)=e*".
In (7) and (8) one can take B=0,C=1, D=¢%/a,t,=1+x,and E= 1.
Then (10) gives

f(xX)=0(**) as x-o00 iff {(),=0E*"*") as y-co.
II. Let A(x)=loglog(e + x), g(x)=e*. In (7) and (8) one can take

t,=x+e ¥, C=e, D any number > ¢, B a sufficiently large number, and
E = 1. Here (10) reads

Sx)=0€") as x-oo iff {f),=0*) as y-co.
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5. Proof of the Theorem. Assume that f**" is >0 and nondecreasing
in |0, oo) (otherwise, consider —f). Let

ko0
Fix)= f(x)— Z fj!(O) x’

so that F(0)=F'(0)=..-=F®0)=0 and F**P(x)=f*"V(x). Also
F —P(F)=f— P,(f). Furthermore, by (4), f(x)=0(g(x)) as x— co iff
F(x)=0(g(x)) as x— oo. Thus we may assume without loss of generality
that

f90)=0,j=0,1,.,k, and hence fY(x) is >0 and
nondecreasing in [0, o0) for j=0, 1,.., k + 1. (11)

Suppose now that M is a number such that
ory < Mo(y) for all y > somey,>0. (12)
Let x > y,. Define the integer n(:>1) and the number X by
h(n — 1)< x < h(n),
X = h(n) + (2k) " '(h(n + 1) — h(n)).

By the remainder theorem for Lagrange interpolation [1,p. 56] we have,
using the notation (2), for some & € (h(n), h(n + 1)),

(k+1)
@) = Py (it b)) =L (Orﬂ* x40)

k+1)!

(2k)k+1

By (6), h(n+1)—h(m)=["""K'()dx>h(n+1)>A " h'(n—1) so
that
FEVE) K SEDQ KM f(E) = Pl B ) B (n— 1)~
KM k' (n— 1)~
where M, = (k + D)I(2k)** 42+D(1 . 3 ... 2k — 1))~". By (12) and (9),
FEDX) K MM g(x) h'(n— 1)"* ' < MM, g'(x)** ' g *(x). Thus, by (5),

for some constant u,, f**V(x) << g (x)**' g *(x) throughout [0, c0).
Furthermore, for j =1, 2,..., kK + 2, we have on [0, o),

S 0) g (P ) (13)
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This was just shown to hold for j=1. Suppose it holds for some j,
1 <j<k+ 1. Then, by (13), on [0, 0),

SE () =J: SN dt <#kf: g'Ole' @yg ) ar

=u, 8O[ &' () g1 5

d

[ 8O3 (g O/ O d

iy 8(x)] &' (x)/ gCe) <.
Taking, in (13), j= k + 2, we have by (11),

0< f(x)<pyg(x)  throughout [0, ),

as claimed in (10).
For the converse suppose that, for some constant J,

0< /(x) < Jgx) throughout [0, o).
For j=0, ..., k + 1 and with B, C, D of (7),
fOX)KICY=Y2 Dl g'(xyYg' /(x)  throughout [B, ). (14)

This is true for j= 0 and assuming its truth for some j, 0 <j < k, we have by
(11) and (7), for every x € [B, o0) and a suitable § € (x, 1,),

IO DY 81 0) > 1O — £OW) = (L= X))
>t —x) /"),
SO ) <JICIPIR DI g/(1,) g(t ) g(t)/(te— x)
<ch(i+1)/2 Di+l g'(x}i+1g_j(x).
With J, = JCK&*+1/2 pk+1(14) yields

FED ()T g (x)/g()])* g(x) throughout [B, )

and hence, by (3) and (5), for a suitable constant L,

f“‘*”(x) <L[g'(x)/g(x)]"“ g(x) throughout [0, o). (15)
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Let 0 < y< x. For a proper n> 1, h(n — 1) < x < h(n). Using again (2)
and the above remainder theorem, we have, for some n € (h(n — 1), h(n)),

|fG) = Pl xs )| = [f 4 D)/ (k + 1] H) |x — x|, (16)

For j=0, 1,., k, |x —x{"| < h(n) — h(n — 1) = [2_, h'(t) dt < Ah'(n) (by
(6)). Setting M =LA**'/(k + 1)! we obtain from (16), (15), (5), (3), and
@®),

|f(x)—Pkcf,x;h)|<M[—g£)—)] g(m) ' ()

g (h(m)) T+ e
<M [ e ] g(h(n)) b (n)
= My(h(n)) < MEJ(y).

Hence (f),,= O(¢(y)) as y = 0.

6. COROLLARY. Assume the hypotheses of the Theorem. A necessary
and sufficient condition for f(x) to be O(g(x)) as x - oo is the existence of a
real function Q(x) with domain [0, o0), continuous there, which in each I, of
(1) coincides with some polynomial of degree < k and such that

sup |f(x) = ()| = O@(»))

as y— oo.

Proof. Only sufficiency needs proof. Let 1 be a number such that

sup| /() — 0() | <upy)  forall y>0. (17)

Let £>y> 0 and set
R(x)=Py(f, x; h) — Q(x).
Then ¢t € I, for some n > 1 and, using (2),

R(t)= é R(x[™) ﬁ (t —x") X" — x). (18)
J=0 s=0

s#J

Let 0 Cj <k If x{™ < y, then h(n — 1) < y < h(n) and by (6), (5), and (3),
h'(n— 1)< AR (n) AR (R'())
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and
[g"(h(n— 1))/ g(h(n — 1))]*** g(h(n — 1)) < [g'()/ gW)]** ' g(y)
so that, by (17),
| £ (x$) — Q(xs™)| S ug(h(n — 1))
=ulh’'(n—1)g'(h(n—1))]**' g X (h(n — 1))
Sud RT3 g M e ) =ud" T ().

If x{™ >y, then by (17), | f(x{™) — Q(x\)| S up(y) <ud**'¢(y) as 4 > 1.
By (18),

IR() < (ke + 1) "+ 'p(y) K
and hence by (17),
|f@©) =P s DI [T+ (k+ 1) A " k¥ g ().

Thus (/) ,= O(#(y)) as y— oo and hence, by (10), f(x)=0(g(x)) as
X — 0.

REFERENCES

1. P. J. Davis, “Interpolation and Approximation,” Blaisdell, New York, 1963; Dover, New
York, 1975.



