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1. Our purpose is to relate, in quite a general setting, the order of
magnitude of real functions f(x) as x -+ 00 to their degree of approximation
by piecewise polynomials interpolating them on some simple denumerable
sets of points.

2. Letfbe a real function on [0, (0), let k be a positive integer, and let h
be a real function satisfying h(O) = 0, h'(x) >°and nonincreasing in [0, (0),
and limx .... 00 h(x) = 00. We denote by Pk(f, x; h) == Pk(f) the function with
domain [0, (0) which in each

In = [h(n - 1), h(n», n = 1,2,3,..., (1)

coincides with the polynomial of degree ~k interpolating f at the k + 1
equally spaced points

xy> = h(n - 1) + (dn/k)j, j= 0,1,..., k, (2)

where dn = h(n) - h(n - 1) is the length of In' In particular, P1(f) is a
polygonal function, interpolating f at h(n), n = 0, 1,2,.... In the following
theorem we relate the order of magnitude of f(x) as x-+ 00 to that of our
"degree of approximation"

<J)k.y== sup If(x) -Pk(f, x; h)1
x>y

as y-+ 00.

Later we show that, in our theorem (in one direction), Pk(f) can be
replaced by any piecewise polynomial of degree ~k whose knots are h(n),
n = 0, 1,2,..., not necessarily one arising from interpolation.
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3. THEOREM. Let flk+ 1) exist and be ~O and nondecreasing (or:::;;O and
nonincreasing) in [0, (0). Let g be a real function satisfying

g(O) > 0, g'(x) >° on [0, (0).

x k = O(g(x» as x ...... 00.

(3)

(4)

g'lg is nondecreasing in [0, (0) and absolutely continuous in
each [0, x j, °< x < 00. (5)

There is a constant A such that,for n = 1,2,... ,

h'(n - I) :::;;Ah'(n).

There are constants B(~O), C, D such that, for every x ~ B,
there is a tx > x satisfying

(6)

g'(tx)/g(tx):::;; Cg'(x)/g(x), g(fx)/(tx - x):::;; Dg'(x). (7)

There is a constant E such that ~(y):::;; E~(x) whenever
0:::;; x <y. (8)

Here

Then

on [0,(0). (9)

f(x) = O(g(x» as x ...... 00 iff (f)k,y= O(~(y» as Y ...... 00. (10)

4. EXAMPLES. I. Let h(x) == log(1 + x), 0 < a:::;; k + I, and g(x) == eax.
In (7) and (8) one can take B = 0, C = I, D = ea la, tx == I +x, and E = 1.
Then (10) gives

f(x)=O(eax ) as x ...... oo iff (f)k,y=O(e(a-k-I)y) as y ...... oo.

II. Let h(x) == log log(e +x), g(x) == ee
x

• In (7) and (8) one can take
tx == X + e-X, C = e, D any number> e, B a sufficiently large number, and
E = 1. Here (10) reads

as x ...... 00 as y ...... 00.
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5. Proof of the Theorem. Assume that f(k+ I) is ~o and nondecreasing
in [0, 00 ) (otherwise, consider -f). Let

F(x) == f(x) - t fU~,(O) xi
j=O J.

so that F(O)=F'(O)= .. · =F(k)(O) =° and F(k+l)(x)==f(k+1)(X). Also
F-Pk(F)=f-Pk(f). Furthermore, by (4), f(x)=O(g(x» as x--+oo iff
F(x) = O(g(x» as x --+ 00. Thus we may assume without loss of generality
that

U)· U)f (0) = 0, J = 0,1,... , k, and hence f (x) is ~O and
nondecreasing in [0, (0) for j = 0, 1,..., k + 1. (11 )

Suppose now that M is a number such that

for all y~ some Yo ~ 0. (12)

Let x ~ Yo' Define the integer n(~1) and the number .i by

h(n - 1) ~ x <h(n),

x= h(n) + (2k)-1(h(n + 1) - h(n».

By the remainder theorem for Lagrange interpolation [1, p. 56] we have,
using the notation (2), for some c;E (h(n),h(n + 1»,

f (k+ 1) (C;) k
If(x) - Pdf, x; h)1 = (k + 1)! }] Ix - x;n+ I) I

f(k+l)(c;) k+1 1· 3 ... (2k-l)
= (k+ 1)! [h(n+ 1)-h(n)] (2k)k+1

By (6), h(n + 1) - h(n) = f~+1 h'(x) dx ~ h'(n + 1) ~A -2 h'(n - 1) so
that

f(k+ I)(x) ~ f(k+ I)(c;) ~ Mk If(x) - Pif, x; h)1 h'(n - 1)-k-1

~ Mk<J)k,xh'(n - 1)-k-l

where Mk=(k+1)!(2k)k+1A 2(k+I)(1.3 .. ·(2k-1»-I. By (12) and (9),
f(k+I)(x)~MMk~(x)h'(n-1)-k-1 ~MMkg'(X)k+lg-k(X). Thus, by (5),
for some constant JJk' f(k+I)(X)~JJkg'(X)k+1 g-k(X) throughout [0, (0).
Furthermore, for j = 1,2,... , k + 2, we have on [0, (0),

(13)
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This was just shown to hold for j = 1. Suppose it holds for some j,
1 <.j <,k + 1. Then, by (13), on [0, (0),

= fJ.k g(t)[ g' (t)/ get) ]k+ l-j I~

x d
-fJ.kJ g(t)-[{g'(t)/g(t)}k+l-j]dt

o dt

<. fJ.k g(x)[ g' (x)/ g(x) ]k+ I-j.

Taking, in (13),j=k+2, we have by (11),

throughout [0, (0),

as claimed in (10).
For the converse suppose that, for some constant J,

0<' f(x) <. Jg(x) throughout [0, (0).

For j = 0, 1,..., k + 1 and with B, C, D of (7),

throughout [B, (0). (14)

This is true for j = 0 and assuming its truth for some j, 0 <.j <. k, we have by
(11) and (7), for every x E [B, (0) and a suitable 0 E (x, tx),

JC(j-l)j/2 Dig'(txY gl-j(tx)"~ f(j)(tx) - fUl(x) = (tx - x)fu+ 1)(0)

~ (tx - x)fu+ 1) (x),

fU+I)(x) <.JCU-lli/2 Di[g'(tx)/ g(tx)F g(tJj(tx -x)

<. JcjU+ 1)/2 Di+l g'(xy+lg-j(X).

f(k+ 1)(X) <. Jd g'(x)/g(x) jk+ Ig(X) throughout [B, (0)

and hence, by (3) and (5), for a suitable constant L,

j(k+ 1)(X) <. L [g'(x)/g(x)]k+ 1 g(x) throughout [0, (0). (15)
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Let 0 ~ y~ x. For a proper n ~ 1, h(n - 1) ~ x <h(n). Using again (2)
and the above remainder theorem, we have, for some 17 E (h(n - 1), h(n)),

k

If(x)-PkU:x;h)l= [f(k+O(17)j(k+ I)!] nIx-x?ll. (16)
j=O

For j=O, 1,...,k, Ix-xtll~h(n)-h(n-l)=f~_lh'(t)dt~Ah'(n)(by
(6)). Setting M = LA k+ Ij(k + I)! we obtain from (16), (15), (5), (3), and
(8),

If(x)-PkU:x;h)1 ~M [~(~: ]k+l g(17)h'(n)k+1

~M [g'(h(n)) ]k+l g(h(n))h'(n)k+l
g(h(n))

= M~(h(n)) ~ ME~(y).

Hence (f)k,y= O(~(y)) as y-+ 00.

6. COROLLARY. Assume the hypotheses of the Theorem. A necessary
and sufficient condition for f(x) to be O(g(x)) as x-+ 00 is the existence ofa
real function Q(x) with domain [0, (0), continuous there, which in each I" of
(1) coincides with some polynomial of degree ~ k and such that

sup If(x) - Q(x) I= O(~(y))
x>y

as y-+ 00.

Proof Only sufficiency needs proof. Let fJ. be a number such that

sup If(x) - Q(x) I~fJ.~(y)
x>y

Let t ~ Y~ 0 and set

for all y~ O. (17)

R(x) == PkU: x; h) - Q(x).

Then tEl" for some n~ 1 and, using (2),

k k

R(t) = L R(XJ"l) n (t - x~"l)/(xj"l - x~"»). (18)
j=o 5=0

5*j

Let 0 ~j ~ k. If XJ"l < y, then h(n - 1) < y <h(n) and by (6), (5), and (3),

h'(n-l)~Ah'(n)~Ah'(h-l(y))
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[g'(h(n - 1»/g(h(n - l»lk+l g(h(n - 1» < [g'(y)/g(y)lk+l g(y)
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so that, by (17),

If(xjn) - Q(xjn» I!{" p.'(h(n - 1»
=p.[h'(n - l)g'(h(n - l»lk+ I g-k(h(n - 1»
!{",uA k+ 1 [h' (h -I(y» g' (y) lk+ Ig-k(y) =,uA k+ I '(y).

If xyn) ~ y, then by (17), If(xyn» - Q(xyn» I!{" p.'(y)!{",uA k+ l,(y) as A ~ 1.
By (18),

and hence by (17),

If(t)-Pk(f,t;h)l!{" [1 +(k+ I)A k+1 elp.'(y).

Thus U)k,y= O(,(y» as y--+ 00 and hence, by (10), f(x) = O(g(x» as
x --+ 00.
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